These docs are for v1.3.0. Click to read the latest docs for v1.6.

Getting Started with Smart Contracts

🚧

Please install EOSIO if you have not already,

Step 1: Install Contract Development Toolkit (CDT)

EOSIO Contract Development Toolkit - Follow Installation instructions and proceed. The eosio-cpp utility that compiles contracts and generates ABI files is included in this toolkit.

First clone

git clone --recursive https://github.com/eosio/eosio.cdt --branch v1.2.1 --single-branch
cd eosio.cdt

Now run build.sh and provide the core symbol for the EOSIO blockchain that intend to deploy to. build.sh will install any dependencies that are needed.

./build.sh <CORE_SYMBOL>

Finally, install the build

📘

This install will install the core to /usr/local/eosio.cdt and symlinks to the top level tools (compiler, ld, etc.) to /usr/local/bin

$ sudo ./install.sh

Step 2: Start Your Node

If you're using docker and you're container isn't running, run the following.

docker start eosio

You can start your own single-node blockchain with this single command if you're running nodeos locally.

$ nodeos -e -p eosio --plugin eosio::chain_api_plugin \
        --plugin eosio::history_api_plugin

This command sets many flags and loads some optional plugins which we will need for the rest of this tutorial. Assuming everything worked properly, you should see a block generation message every 0.5 seconds.

On Docker,

docker logs --tail 25 eosio
...
3165501ms thread-0   producer_plugin.cpp:944       produce_block        ] Produced block 00000a4c898956e0... #2636 @ 2018-05-25T16:52:45.500 signed by eosio [trxs: 0, lib: 2635, confirmed: 0]
3166004ms thread-0   producer_plugin.cpp:944       produce_block        ] Produced block 00000a4d2d4a5893... #2637 @ 2018-05-25T16:52:46.000 signed by eosio [trxs: 0, lib: 2636, confirmed: 0]
...

Step 3: Create a Wallet

A wallet is a repository of private keys necessary to authorize actions on the blockchain. These keys are stored on disk encrypted using a password generated for you. This password should be stored in a secure password manager or written down.

$ cleos wallet create --to-console
Creating wallet: default
Save password to use in the future to unlock this wallet.
Without password imported keys will not be retrievable.
"PW5JuBXoXJ8JHiCTXf...."

Your wallet will automatically lock after a period of time, here's how you unlock it

$ cleos wallet unlock
password:

For security purposes it is generally best to leave your wallet locked when you are not using it. To lock your wallet without shutting down nodeos you can do:

cleos wallet lock
Locked: default

You will need your wallet unlocked for the rest of this tutorial.

Load the Tutorial Key

The private blockchain launched in the steps above is created with a default initial key which must be loaded into the wallet (provided below)

$ cleos wallet import --private-key 5KQwrPbwdL6PhXujxW37FSSQZ1JiwsST4cqQzDeyXtP79zkvFD3
imported private key for: EOS6MRyAjQq8ud7hVNYcfnVPJqcVpscN5So8BhtHuGYqET5GDW5CV

Step 4: Load BIOS Contract

Now that we have a wallet with the key for the eosio account loaded, we can set a default system contract. For the purposes of development, the default eosio.bios contract can be used. This contract enables you to have direct control over the resource allocation of other accounts and to access other privileged API calls. In a public blockchain, this contract will manage the staking and unstaking of tokens to reserve bandwidth for CPU and network activity, and memory for contracts.

The eosio.bios contract can be found in the contracts/eosio.bios folder of your EOSIO source code. The command sequence below assumes it is being executed from the root of the EOSIO source, but you can execute it from anywhere by specifying the full path to ${EOSIO_SOURCE}/build/contracts/eosio.bios.

If you're using docker, the command is:

$ cleos set contract eosio contracts/eosio.bios -p eosio@active
Reading WAST...
Assembling WASM...
Publishing contract...
executed transaction: 414cf0dc7740d22474992779b2416b0eabdbc91522c16521307dd682051af083  4068 bytes  10000 cycles
#         eosio <= eosio::setcode               {"account":"eosio","vmtype":0,"vmversion":0,"code":"0061736d0100000001ab011960037f7e7f0060057f7e7e7e...
#         eosio <= eosio::setabi                {"account":"eosio","abi":{"types":[],"structs":[{"name":"set_account_limits","base":"","fields":[{"n...

If you built from source, the command is:

$ cleos set contract eosio build/contracts/eosio.bios -p eosio@active
Reading WAST...
Assembling WASM...
Publishing contract...
executed transaction: 414cf0dc7740d22474992779b2416b0eabdbc91522c16521307dd682051af083  4068 bytes  10000 cycles
#         eosio <= eosio::setcode               {"account":"eosio","vmtype":0,"vmversion":0,"code":"0061736d0100000001ab011960037f7e7f0060057f7e7e7e...
#         eosio <= eosio::setabi                {"account":"eosio","abi":{"types":[],"structs":[{"name":"set_account_limits","base":"","fields":[{"n...

The result of this command sequence is that cleos generated a transaction with two actions, eosio::setcode and eosio::setabi.

The code defines how the contract runs and the abi describes how to convert between binary and json representations of the arguments. While an abi is technically optional, all of the EOSIO tooling depends upon it for ease of use.

Any time you execute a transaction you will see output like:

executed transaction: 414cf0dc7740d22474992779b2416b0eabdbc91522c16521307dd682051af083  4068 bytes  10000 cycles
#         eosio <= eosio::setcode               {"account":"eosio","vmtype":0,"vmversion":0,"code":"0061736d0100000001ab011960037f7e7f0060057f7e7e7e...
#         eosio <= eosio::setabi                {"account":"eosio","abi":{"types":[],"structs":[{"name":"set_account_limits","base":"","fields":[{"n...

This can be read as: The action setcode as defined by eosio was executed by eosio contract with {args...}.

#         ${executor} <= ${contract}:${action} ${args...}
> console output from this execution, if any

As we will see in a bit, actions can be processed by more than one contract.

The last argument to this call was -p eosio@active. This tells cleos to sign this action with the active authority of the eosio account, i.e., to sign the action using the private key for the eosio account that we imported earlier.

Step 5: Create Accounts

Now that we have setup the basic system contract, we can start to create our own accounts. We will create two accounts, user and tester, and we will need to associate a key with each account. In this example, the same key will be used for both accounts.

To do this we first generate a key for the accounts.

$ cleos create key --to-console
Private key: 5Jmsawgsp1tQ3GD6JyGCwy1dcvqKZgX6ugMVMdjirx85iv5VyPR
Public key: EOS7ijWCBmoXBi3CgtK7DJxentZZeTkeUnaSDvyro9dq7Sd1C3dC4

Then we import this key into our wallet:

$ cleos wallet import --private-key 5Jmsawgsp1tQ3GD6JyGCwy1dcvqKZgX6ugMVMdjirx85iv5VyPR
imported private key for: EOS7ijWCBmoXBi3CgtK7DJxentZZeTkeUnaSDvyro9dq7Sd1C3dC4

NOTE: Be sure to use the actual key value generated by the cleos command and not the one shown in the example above!

Keys are not automatically added to a wallet, so skipping this step could result in losing control of your account.

Create Two User Accounts

Next we will create two accounts, user and tester, using the key we created and imported above.

$ cleos create account eosio user EOS7ijWCBmoXBi3CgtK7DJxentZZeTkeUnaSDvyro9dq7Sd1C3dC4 EOS7ijWCBmoXBi3CgtK7DJxentZZeTkeUnaSDvyro9dq7Sd1C3dC4
executed transaction: 8aedb926cc1ca31642ada8daf4350833c95cbe98b869230f44da76d70f6d6242  364 bytes  1000 cycles
#         eosio <= eosio::newaccount            {"creator":"eosio","name":"user","owner":{"threshold":1,"keys":[{"key":"EOS7ijWCBmoXBi3CgtK7DJxentZZ...

$ cleos create account eosio tester EOS7ijWCBmoXBi3CgtK7DJxentZZeTkeUnaSDvyro9dq7Sd1C3dC4 EOS7ijWCBmoXBi3CgtK7DJxentZZeTkeUnaSDvyro9dq7Sd1C3dC4
executed transaction: 414cf0dc7740d22474992779b2416b0eabdbc91522c16521307dd682051af083 366 bytes  1000 cycles
#         eosio <= eosio::newaccount            {"creator":"eosio","name":"tester","owner":{"threshold":1,"keys":[{"key":"EOS7ijWCBmoXBi3CgtK7DJxentZZ...

NOTE: The create account subcommand requires two keys, one for the OwnerKey (which in a production environment should be kept highly secure) and one for the ActiveKey. In this tutorial example, the same key is used for both.

Because we are using the eosio::history_api_plugin we can query all accounts that are controlled by our key:

$ cleos get accounts EOS7ijWCBmoXBi3CgtK7DJxentZZeTkeUnaSDvyro9dq7Sd1C3dC4
{
  "account_names": [
    "tester",
    "user"
  ]
}